Preview Kidney Function in Civet (Paradoxurus hermaphroditus): Especially Preview of Urea Nitrogen and Creatinin

Sarmin
Department of Physiology, Faculty of Veterinary Medicine, Gadjah Mada University,
Jl. Fauna 2 Karangmalang, Yogyakarta 55281. Telp +62-274-560864, Fax +62-274-560861, emai: sarminkh76@ugm.ac.id

Abstract
Civet is a rare, nearly to extinct animal. Urea and creatinine concentrations in serum are commonly measured as indicators of renal function in clinical settings and as indices of nutritional status in animal but this reference values for the civet are not yet established. This study aimed to assess renal function seen an picture of urea nitrogen, and creatinine at 3 healthy of Civet (Paradoxurus hermaphroditus). The mean values of urea nitrogen were 8.42 ± 1.54 mg/dl while creatinine were 3.16 ±1.65 mg/dl. These results contribute to the picture of kidney function in Hermaphroditus Paradoxurus species as a preliminary determination of the health status of these animals.

Key words: Urea Nitrogen, Creatinine, Paradoxurus hermaphroditus

Introduction
Laboratory studies to evaluate function of Civet organ are more informative when results are analyzed in the context of normal values. Nutrition, age, sex, genetics, stress and transportation are all known to affect biochemical parameters observed between tropical and temperate animals (Ogunsanmi et al, 1994). Urea and creatinine concentrations in serum are commonly measured as indicators of renal function in clinical settings and as indices of nutritional status in animal. Creatinine is produced during muscle catabolism and blood levels are generally proportional to an animal's muscle mass, while urea is the end product of nitrogen metabolism and more closely reflects protein intake (Saltz and White 1991). Urinary creatinine can be used as an index of concentration when comparing urine samples because it is freely filtered at the glomerulus and excretion is relatively constant. But, even so up until this time, the operation sketch of civet’s kidney as one of the wild animal seen from the urea nitrogen and creatinin projection has not been revealed much. The aim of the current study was to determine of urea nitrogen and creatinin values on these parameters in civet.

Materials and Method
Blood was collected from three healthy civet with 2-4 months old adapted for two weeks in a cage and get food freely through the femoral vein. Sample of blood immediately separated for urea nitrogen and creatinin by standard methods as described by Kraft and Duerr (1999) and Tedesco et al., (1991). The data were given as mean and standard deviation.

Results
The mean and standard deviation of urea nitrogen and creatinin is shown on table 1.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea (mg/dl)</td>
<td>8.42 ± 1.64</td>
<td>21.87±2.04</td>
<td>27.00±6.86</td>
<td>16.40±3.09 (10)</td>
<td>44.07±10.8 (1)</td>
<td>ND</td>
<td>ND</td>
<td>20.0±5.10</td>
<td>1.84±0.04 (Summer)</td>
<td>1.65±0.04 (Winter)</td>
<td>37.9 ± 1.7</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>3.16 ± 1.66</td>
<td>1.2±0.14</td>
<td>1.28±0.15</td>
<td>0.75±0.11(10)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.7 ± 0.04</td>
<td>1.7±0.7</td>
<td>0.3±0.12</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Comparison of urea nitrogen and creatinin (Mean±SD) in Civet (our study), Wild grasscutters, Captive raised grasscutters (Oparra et al., 2006), Pangolin (Oparra et al., 1998), Nigerian goats (Odusu & Adelevo, 1975) (n), White Fulani cattle (Odusu & Fasanssi, 1979), Human (McFarlane et al., 1970), Holstein heifer (Recoff et al., 2004), West African Dwarf (WAD) goats (Oparra et al., 2010) and Spanish ibex from Andalusia (Perez et al., 2003) (ND = NOT DETERMINED).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea (mg/dl)</td>
<td>8.42±1.54</td>
<td>21.57±2.84</td>
<td>27.00±6.85</td>
<td>16.40±3.85 (10)</td>
<td>44.07±10.9 (70)</td>
<td>ND (Summer)</td>
<td>ND (Winter)</td>
<td>ND (Summer)</td>
<td>ND (Winter)</td>
<td>ND (Summer)</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>3.18±1.68</td>
<td>1.2±0.14</td>
<td>1.29±0.15</td>
<td>0.70±0.11 (10)</td>
<td>ND (Summer)</td>
<td>ND (Winter)</td>
<td>ND (Winter)</td>
<td>ND (Summer)</td>
<td>ND (Winter)</td>
<td>ND (Summer)</td>
</tr>
</tbody>
</table>
Discussion

The Urea Nitrogen’s concentrate is on 8.42 ± 1.54 mg/dL lower than urea nitrogen concentrate in Wild grasscutters (Opara et al., 2006), Captive reared grasscutters (Ogunsanmi et al, 2002), Captive reared grasscutters (Ogunsanmi et al, 2002), African Giant Rat (Oyewale et al, 1998), Pangolin (Oyewale et al, 1998), Nigerian goats (Oduye & Adedovoh, 1976), Human (Mcfarlene et al, 1970), West African Dwarf (WAD) goats (Opara et al., 2010; Ikhimioya and Imasuen, 2007), Girgentana goat (Piccione et al., 2010), mountain reedbucks (Reduncula fulvorufula) (Vahala et al., 1991), and cape hunting dogs (Vahala et al., 1990). But, the concentration is still higher than the urea nitrogen’s percentage in Holstein heifer (Rasooli et al., 2004). The differences of urea nitrogen in many species of animal happen because the different of loss of extracellular fluid, the difference respond towards stress because of the heat and the food (Rasooli et al., 2004), moreover, because the different condition of excessive tissues protein catabolism associated with protein deficiency (Oduye and Adadevoh, 1976). At the same time, the concentration of creatinine, were 3.16 ± 1.65 mg/dl higher than Wild grasscutters (Opara et al., 2006), Captive reared grasscutters (Ogunsanmi et al, 2002), African Giant Rat (Oyewale et al, 1998a), Pangolin (Oyewale et al, 1998), West African Dwarf (WAD) goats (Opara et al., 2010) and Girgentana goat (Piccione et al., 2010), but still lower than mountain reedbucks (Reduncula fulvorufula) (Vahala et al., 1991), wild grasscutters (Opara et al., 2006) and cape hunting dogs (Vahala et al., 1990). In West African Dwarf (WAD) goats, urea and creatinine levels are not influenced by diet. This result is also showing the difference between species in regard to catabolism of protein’s cell (Oduye and Adadevoh, 1976), activity of glukoneogenesis so the level of urea in wide variety (Radostits et al. 1994) and variation of dietary protein (Tedesco et al., 1991). In conclusion, the value of urea nitrogen and creatinin for Civet is may help when interpreting laboratory of renal function in civet.

Acknowledgement

Thanks to Drh. Dwi Liliek Kusindarta, MP., Ph.D and drh. Woro Danur Wendo for the co-operation in providing the animal for the test. My gratitude also goes to Lusi Jayatingrum, Apriani for the co-operation in the research.

References


Rasooli, A, Nouri, M, Khadjeh, GH, and Rasekh, A. 2004. The Influences of Seasonal Variations on Thyroid Activity and Some Biochemical Parameters of Catle. Iranian Journal Veterinary Research University of Shiraz Volume 5 No.2

