Proof of The Formation of OH Radicals from Methyl Paraben and Its Effect on Cancer Formation

Authors

  • Aden Dhana Rizkita Sekolah Tinggi Ilmu Kesehatan Bogor Husada
  • Wilis Okti Pamungkas Universitas Indonesia
  • Sintia Ayu Dewi Universitas Negeri Semarang
  • Rahmadhani Tyas Angganawati Sekolah Tinggi Ilmu Kesehatan Bogor Husada
  • Anna Uswatun Hasanah Rochjana Sekolah Tinggi Ilmu Kesehatan Bogor Husada
  • Azhari Firmansyah Sekolah Tinggi Ilmu Kesehatan Bogor Husada
  • Reza Pratama Saputra Sekolah Tinggi Ilmu Kesehatan Bogor Husada

Keywords:

Cancer, DNA Mutation, Fenton reaction, Metyl paraben, 8-Hydroxy-2’-Deoxyguanosine

Abstract

Methyl paraben is often used by the cosmetic industry such as facial moisturizer, anti-aging, hair dye, skin whitening, shaving gel, eye shadow and others because it is considered non-toxic. However, in fact, several studies have found that methyl paraben is able to accumulate in the body, resulting in the formation of radicals. Because of its ability to produce radicals, this paper tries to prove that methyl paraben used in the cosmetic industry must be considered immediately. Because we suspect that exposure to radicals from methyl paraben will be able to interact with DNA, causing DNA mutations that lead to cancer. In this summary, we prove that exposure to methyl paraben in mice is able to produce DNA mutation biomarker products with the formation of 8-Hydroxy-2’-Deoxyguanosine (8-OHdG), either by direct metabolism or by oxidative stress triggered by the presence of metal ions in the Fenton reaction such as Cu and Fe. The method used is direct in-vivo exposure to test animals and in-vitro to prove it by synthesizing the DNA damage biomarker product using LCMS.

References

Broedbaek, K., Weimann, A., Stovgaard, E. S. &Pousen, H. E., 2011. Urinari 8-oxo-7,8dihydro-2'-deoxiguanosine as a biomarker in type 2 diabetes. Free Radic. Bio. Med 51: 1473-1479.
Budiawan, A D Rizkita, S Handayani and I C Dani. 2020. In vivo study of 8-OHdG as a biomarker DNA damage by combining the exposure of nonyl phenol and copper using ELISA technique. In: IOP Conference Series: Materials Science and Engineering, Volume 902, 4th International Symposium on Current Progress in Functional Materials 6-7 November 2019, Bali, Indonesia.
Budiawan dan Widiastuti, D. R., 2015. In vitro formation of 8-hydroxy-2;-deoxyguanosine (8-OHdG) in calf thymus DNA upon treatment of 2'-deoxyguanosine with prophylgallate and 2,6-tert-buthyl-p-benzoquinone. Makara journal of science, 19(4): 167-176.
Charles, A. K. and Darbre, P. D., 2013. Combinations of parabens at concentrations measured in human breast tissue can increase proliferation ofMCF-7 human breast cancer cells. Journal of applied toxicology, 33: 390-398.
Cooke, M., Olinski, R. & Loft, S., 2008. Measurement and meaning of oxidatively modified DNA lesions in urine. Cancer Epidemiol Biomarkers Prev, 17: 3-14.
Decker, R. and Wenninger, J., 1987. Frequency of preservative use in cosmetic formulas as disclosed to FDA. Cosmetics and Toiletries, 102(2): 21-24.
Diakowska, D., Lewandowski, A., Kopec, W. and Chrzanowska, T., 2007. Oxidative DNA damage and total antioxidant status in serum of patients with esophageal squamous cell carcinoma. Hepatogastroenterology, 54: 1701-1704.
Elder, R., 1984. Final report on the safety assessment of methylparaben, ethylparaben, prophylparabenandbuthylparaben. J.Ame. Coll. Toxicol, 3: 147-209.
Gambling, L. and McArdle, H., 2004. Iron, copper and fetal development. Proc. Nutr. Soc, 98(4): 553–562.
Jomova, K. and Valko, M., 2011. Advances in metal-induced oxidative stress and human disease. Toxicol, 283: 65-87.
Kala, C., Ali, S. S., Rajpoot, S. and Khan, N. A., 2015. Protection againts FCA induced oxidative stress induced DNA damage as a model of arthriiitis and in vitro-arthritic potential of Costusspeciosus rhizome extract. International journal of pharmacognosy and phytochemical research, 2: 383-389.
Khanna, S., Dash, P. R. and Darbre, P. D., 2014. Exposure to parabens at the concentration of maximal proliferative response increase migratory and invasive activity of human breast cancer cells in vitro. J Applied Toxicology, 34: 051-1059.
Kus?, N., Sevgi, H., Bayar?, §. &Fausto, R., 2013. Methylparaben Isolated in Solid Argon: Structural Characterization and UV-Induced Conversion into Methylparaben Radical and Isomeric Ketenes. The journal of physical chemistry B, 117: 1354313555
Kvasnicova, V., Samcova, E., Jursova, A. and Jelinek, I., 2003. Determination of 8hydroxy-2'-deoxyguanosine in untreated urine by capillary electrophoresis with UV detection. Journal of Chromatography. A, 985: 513-517.
Rizkita, A. D., et al. "IOP Conf. Series: Materials Science and Engineering 902 (2020) 011005".
Rizkita, A. D. (2021). 8-hydroxy-2?-deoxyguanosine (8-OHdG) Sebagai Deteksi Dini Kerusakan DNA. Media Sains Indonesia.
Wibowo, E. A. P., Hardyanti, I. S., Nurani, I., & Rizkita, A. D. (2017). Studi Penurunan Kadar Logam Besi (Fe) dan Logam Tembaga (Cu) pada Air Embung Menggunakan Adsorben Nanosilika. Jurnal Ilmiah Sains, 17(2): 131-134.

Downloads

Published

2022-02-22

How to Cite

Rizkita, A. D., Pamungkas, W. O. ., Dewi, S. A. ., Angganawati, R. T. ., Rochjana, A. U. H. ., Firmansyah, A., & Saputra, R. P. . (2022). Proof of The Formation of OH Radicals from Methyl Paraben and Its Effect on Cancer Formation. Proceeding International Conference on Religion, Science and Education, 1, 489–492. Retrieved from https://sunankalijaga.org/prosiding/index.php/icrse/article/view/826

Issue

Section

Articles